Tricyclic Steiner Triple Systems with 1-Rotational Subsystems

نویسندگان

  • Quan Duc Tran
  • Quan D. Tran
چکیده

Tricyclic Steiner Triple Systems with 1-Rotational Subsystems by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 2-rotational Steiner triple systems of order 25

Chee, Y.M. and G.F. Royle, The 2rotational Steiner triple systems of order 25, Discrete Mathematics 97 (1991) 93-100. In this paper, we enumerate the 2-rotational Steiner triple systems of order 25. There are exactly 140 pairwise non-isomorphic such designs. All these designs have full automorphism groups of order 12. We also investigate the existence of subsystems and quadrilaterals in these d...

متن کامل

Biembeddings of 2-Rotational Steiner Triple Systems

It is shown that for v ≡ 1 or 3 (mod 6), every pair of Heffter difference sets modulo v gives rise to a biembedding of two 2-rotational Steiner triple systems of order 2v + 1 in a nonorientable surface. AMS classification: 05C10.

متن کامل

Classroom note: Some partitions of S(2, 3, v2) and S(2, 4, 2)

Introduction The aim of this note is to provide a Steiner triple system STS( v ) which admits a partition into v STS( v) for every v 1 or 3 (mod 6). The STS( v ) obtained in this way will also contain ~v( v 1) subsystems of order 3v. An analogous construction is provided of an S(2, 4, v ) with a partition into v S(2, 4, v)'s in the case v 1 (mod 12). The Steiner system constructed here will als...

متن کامل

Some progress on the existence of 1-rotational Steiner triple systems

A Steiner triple system of order v (briefly STS(v)) is 1-rotational under G if it admits G as an automorphism group acting sharply transitively on all but one point. The spectrum of values of v for which there exists a 1-rotational STS(v) under a cyclic, an abelian, or a dicyclic group, has been established in Phelps and Rosa (Discrete Math 33:57–66, 1981), Buratti (J Combin Des 9:215–226, 2001...

متن کامل

Steiner Triple Systems of Order 19 with Nontrivial Automorphism Group

There are 172,248 Steiner triple systems of order 19 having a nontrivial automorphism group. Computational methods suitable for generating these designs are developed. The use of tactical configurations in conjunction with orderly algorithms underlies practical techniques for the generation of the designs, and the subexponential time isomorphism technique for triple systems is improved in pract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007